48. A company wants to migrate its data analytics environment from on premises to AWS. The environment consists of two simple Node.js
applications. One of the applications collects sensor data and loads it into a MySQL database. The other application aggregates the data into
reports. When the aggregation jobs run, some of the load jobs fail to run correctly.
The company must resolve the data loading issue. The company also needs the migration to occur without interruptions or changes for the
company’s customers.
What should a solutions architect do to meet these requirements?
A. Set up an Amazon Aurora MySQL database as a replication target for the on-premises database. Create an Aurora Replica for the Aurora
MySQL database, and move the aggregation jobs to run against the Aurora Replica. Set up collection endpoints as AWS Lambda functions
behind a Network Load Balancer (NLB), and use Amazon RDS Proxy to write to the Aurora MySQL database. When the databases are synced,
disable the replication job and restart the Aurora Replica as the primary instance. Point the collector DNS record to the NLB.
B. Set up an Amazon Aurora MySQL database. Use AWS Database Migration Service (AWS DMS) to perform continuous data replication from
the on-premises database to Aurora. Move the aggregation jobs to run against the Aurora MySQL database. Set up collection endpoints
behind an Application Load Balancer (ALB) as Amazon EC2 instances in an Auto Scaling group. When the databases are synced, point the
collector DNS record to the ALDisable the AWS DMS sync task after the cutover from on premises to AWS.
C. Set up an Amazon Aurora MySQL database. Use AWS Database Migration Service (AWS DMS) to perform continuous data replication from
the on-premises database to Aurora. Create an Aurora Replica for the Aurora MySQL database, and move the aggregation jobs to run against
the Aurora Replica. Set up collection endpoints as AWS Lambda functions behind an Application Load Balancer (ALB), and use Amazon RDS
Proxy to write to the Aurora MySQL database. When the databases are synced, point the collector DNS record to the ALB. Disable the AWS
DMS sync task after the cutover from on premises to AWS.
D. Set up an Amazon Aurora MySQL database. Create an Aurora Replica for the Aurora MySQL database, and move the aggregation jobs to run
against the Aurora Replica. Set up collection endpoints as an Amazon Kinesis data stream. Use Amazon Kinesis Data Firehose to replicate the
data to the Aurora MySQL database. When the databases are synced, disable the replication job and restart the Aurora Replica as the primary
instance. Point the collector DNS record to the Kinesis data stream.
一家公司希望将其数据分析环境从本地迁移到AWS。该环境包含两个简单的Node.js应用程序。其中一个应用程序收集传感器数据并将其加载到MySQL数据库中。另一个应用程序将数据聚合生成报告。当聚合作业运行时,部分数据加载作业无法正确执行。
公司必须解决数据加载问题。同时,公司还要求迁移过程不能中断服务或对客户产生任何影响。
解决方案架构师应采取以下哪项措施来满足这些需求?
A. 将Amazon Aurora MySQL数据库设置为本地数据库的复制目标。为Aurora MySQL数据库创建Aurora只读副本,并将聚合作业迁移至该副本运行。通过网络负载均衡器(NLB)后面的AWS Lambda函数设置收集端点,并使用Amazon RDS Proxy写入Aurora MySQL数据库。当数据库同步完成后,停止复制作业并将Aurora只读副本重启为主实例。将收集器DNS记录指向NLB。
B. 建立Amazon Aurora MySQL数据库。使用AWS数据库迁移服务(DMS)实现从本地数据库到Aurora的持续数据复制。将聚合作业迁移至Aurora MySQL数据库运行。通过自动扩展组中的Amazon EC2实例在应用负载均衡器(ALB)后设置收集端点。当数据库同步完成后,将收集器DNS记录指向ALB。在从本地迁移至AWS的切换完成后,停用AWS DMS同步任务。
C. 建立Amazon Aurora MySQL数据库。使用AWS数据库迁移服务(DMS)实现从本地数据库到Aurora的持续数据复制。为Aurora MySQL数据库创建Aurora只读副本,并将聚合作业迁移至该副本运行。通过应用负载均衡器(ALB)后面的AWS Lambda函数设置收集端点,并使用Amazon RDS Proxy写入Aurora MySQL数据库。当数据库同步完成后,将收集器DNS记录指向ALB。在从本地迁移至AWS的切换完成后,停用AWS DMS同步任务。
D. 建立Amazon Aurora MySQL数据库。为Aurora MySQL数据库创建Aurora只读副本,并将聚合作业迁移至该副本运行。通过Amazon Kinesis数据流设置收集端点。使用Amazon Kinesis Data Firehose将数据复制到Aurora MySQL数据库。当数据库同步完成后,停止复制作业并将Aurora只读副本重启为主实例。将收集器DNS记录指向Kinesis数据流。
正确答案是C,因为该方案最全面地满足了所有需求:
1. 使用AWS DMS实现持续数据复制确保平滑迁移
2. 设置Aurora副本来运行聚合作业,避免影响主数据库
3. Lambda+ALB的组合提供可靠的数据收集端点
4. RDS Proxy解决数据库连接管理问题
5. 最终通过DNS切换实现无缝迁移
其他选项的问题:
A:使用NLB不适用于Lambda场景,且切换方案复杂
B:使用EC2实例不够serverless且没有解决数据库连接问题
D:Kinesis方案不适合这种需要数据库事务的场景
评论1